Honeycomb: Secure and Efficient GPU Executions via Static Validation J

Haohui Mai Jiacheng Zhao Hongren Zheng! Yiyang Zhao Zibin Liu
Mingyu Gao Cong Wang Huiming Cui Xiaobing Feng Christos Kozyrakis

PrivacyCore ICT,CAS Tsinghuat Stanford IDEA BUPT

1/18

Al on private data needs S&P solutions

m Al is powerful
m e.g. ChatGPT A
m Still security concerns

m Private data: e.g. medical/financial
records GPU
m User does not trust 3rd party cloud

User

Cloud «— | Pri. Data

2/18

GPU TEE: a pragmatic approach

m In Cloud, User App can be harmed by
other Apps and the OS

App

App

oS

3/18

GPU TEE: a pragmatic approach

m In Cloud, User App can be harmed by
other Apps and the OS

m Trusted Execution Environment (TEE)
provides isolation

m Special CPU hardware: Intel SGX/TDX,

AMD SEV
m Efficient: native speeds within enclave

CPU TEE

App

App

oS

3/18

GPU TEE: a pragmatic approach

m GPU is powerful
m Widely used by Al
= We want GPU TEE
m Won't leak private data

CPU TEE
App App
(ON)
! GPU
' GPU TEE

3/18

GPU TEE: a pragmatic approach

m GPU is powerful
m Widely used by Al
= We want GPU TEE
m Won't leak private data
m Current proposals
m Hardware modification: slow evolution

CPU TEE

App App

oS

Custom Unit
GPU

GPU TEE

3/18

GPU TEE: a pragmatic approach

CPU TEE

m GPU is powerful App App

m Widely used by Al
m We want GPU TEE
m Won't leak private data

0S
Custom Driver

m Current proposals

m Hardware modification: slow evolution
m Driver-based: large TCB (>1M SLOC),
error-prone

GPU

GPU TEE

3/18

Honeycomb: confining behaviors via static validation

m Previous work: keep invariant
m Either in hardware or driver

m Our work: by static validation

m On the proper interface

CPU TEE
App App
I OS / Driver
Security Monitor

Static Analysis

GPU

GPU TEE

4/18

Honeycomb: confining behaviors via static validation

m Flexible: Complement hardware limitations
m Efficient:
m Security checks at load time: 2%
overheads for BERT / NanoGPT.
m Modest overall dev. efforts.
m Secure: 18x smaller TCB compared to
Linux-based systems

CPU TEE
App App
I OS / Driver
Security Monitor

Static Analysis

GPU

GPU TEE

4/18

Agenda

Assumptions & Background

5/18

Threat Model

Adversary
m Controls entire software stacks (OS /
compiler / hypervisor)
m Has physical access of the hardware
m Sniffs PCle traffic

m But cannot tamper the CPU or GPU
silicons

CPU TEE

OS / Driver

I PCle

GPU

6/18

Threat Model

MEM
CPU TEE

Assumptions

CPU TEE (e.g., AMD SEV-SNP)
Discrete GPU with integrated memory OS / Driver
Trusted |/O paths: detailed in the paper

Side-channel attacks are out of scope

Trusted IOI I PCle

GPU
| VRAM |

6/18

GPU is a discrete accelerator

m Userspace queues

m MemOp queue: Memcpy kernel / data
m Cmd queue: Launch kernel

m Kernel space driver

m Initialize hardware and address space
m Alloc/Multiplex device memory / queues

|App||App|

CPU

| Ulserspace: Ru ntinlwe |

1

)

|
%

Q

Q

Drv.

Cmd l l\/lerricpy lMgmt

GPU

VRAM

7/18

Agenda

Design & Implementation

8/18

Overview of Honeycomb

| App | | App |
CPU
m Keep invariant by static validation | Userspace Runtime|
m On the proper interface - - - - - i i i
m Regulating high-level semantics M
Q Q Drv
Cmd 1]\7@5{&)}' 'Wémt
GPU
VRAM

9/18

Overview of Honeycomb

| App | | App |
CPU
m Keep invariant by static validation | Userspace Runtime|
m On the proper interface - - - - - i i i
m Regulating high-level semantics M
m SVSM: on Queue Q Q Drv.
m Secure VM Service Module Cmd ! |Mem

Validator: ensure safe GPU kernel ~ 2m----e-o---o---
| SVSM + Vv | [sM |

Securiy Monitor: on Driver

GPU

VRAM

9/18

Architecture of Honeycomb

Honeycomb and hardware are TCB
m SVSM for SEV-SNP VM

m SEV-SNP is an AMD CPU TEE feature
m Regulating user app behavior

m Validator
m Ensure safe GPU kernels

SM for Sandbox VM
m Regulating GPU driver

System-wide invariant: Efficient IPC
m Between GPU kernels of Apps

SEV-SNP VM | Sandbox VM
| App | Linux

| Linux Guest | GPU Drv.
| svsm+Vv [[|[_ sm

Host OS + Cloud Hypervisor

GPU

10/18

SVSM / SM: intercepting at lowest level

m Validate queue cmd / MMIO
m To ensure

m Validated kernels void check_launch_kernel(
= Init sequences AddrSpace *addr,
= Memory isolation DispatchPkt *p) {
m Secure memcpy if (lvalidated(addr,
m Remove OS kernel / GPU driver / p->kernel_object))

runtime from the TCB abort_user();

11/18

SVSM / SM: intercepting at lowest level

= Validate / MMIO
m To ensure
- void check_launch_kernel(
m Init sequences AddrSpace *addr,
m Memory isolation DispatchPkt *p) {
m Secure memcpy if (1 (addr,
m Remove OS kernel / GPU driver / p->kernel_object))
runtime from the TCB abort_user();

Challenge: Recover sematics from MMIO

m BTW: Found 5 new bugs in AMDGPU,
deployed in Linux 5.19

11/18

analysing binaries

Invariant: partitioned addr. space
Integrity: analyse memory access range
m e.g. No write to | protected region

Validate GPU kernel at load time

m Modest overhead

On binaries: remove compiler from TCB

blockDim.x == 256 E—
0 < blockldx.x < 128
0 < threadldx.x < 256 T

void fill(Jint *base ,

int n, int b) {
u32 dim = |blockDim.x ;
u32 gid = blockIdx.x;
u32 1lid = threadIdx.x;
u32 tid = gid * dim + 1id;
if (tid < n)

base[tid] = b;

RW | RO | Protected :é

Private

Polyhedral Analysis + GEMM: ®

2481

Range checks using polyhedral analysis base[tid]

m Techniques from auto parallelization
m e.g. Given base, conclude base[tid]

m Minimal overheads for ML workloads
m Mostly regular

Complex programs: add runtime checks

| |
RW | RO | Protected

m e.g. indirect heap references a[b[i]]

Impl challenge: complexity of analysing
directly on binaries i

Private

base

13/18

Efficient IPC: secure direct memcpy

248 1 248 1
el el
+ +
. ., U U
m Useful primitive for multi-stage pipelines 2 2
. 2 |mmap [F8
m Components from multiple vendors a | o
m Validation enforces proper IPC region N
N O ul ©
m Trusted primitive send () o 04
m Sender's | Protected
o send () = =
m mmap to receivers's |RO & o
m Avoid double encryption/decryption
across the boundary of enclaves @ @
st s
@ ()
2 2
[a o

14/18

Agenda

A Evaluation & Experience

15/18

Security Monitors minimize TCB

m 2 EPYC 7433 CPUs, 1 AMD RX6900XT
GPU

m Linux 5.17, ROCm 5.4.0
m TCB of Honeycomb (~82 KLOC): 18x
smaller
m Linux kernel ~1.5 MLOC

m Core functionalities
m Drivers (AMDGPU) and libraries
(DRM & TTM)

m Userspace runtime (ROCm) ~400 KLOC

SEV-SNP VM

Sandbox VM
| App | Linux
| Linux Guest | GPU Drv.
| svsm+Vv [[|[_ sm

Host OS + Cloud Hypervisor

GPU

16/18

Static validation is efficient

m 5 benchmark suites, HPC, CV, ML .
(DNN/Transformer). 23 apps in total b

m Relative perf from 0.71-1.31 compared to 21
Linux stack w8

m breakdowns in paper %.5 =

m Efficient on ML workloads 0.4 17
m 2% overheads for BERT / NanoGPT 02 7

o

m Spent most time on GEMM kernels STEEETR4EIERIINLTTLIILY
. Q=0 oECS N NSO BERG &
m polyhedral analysis works well SE3E SR IERNN SRS EE8SES
g™ SRR SggT § TLa 2
m Modest dev. effort to pass validations == 5 &%

17/18

Conclusion

m Honeycomb supports secure and efficient GPU executions
m Static analysis (Validation) is a practical and flexible technique for GPU apps

m Honeycomb enhances security via co-designing validation + OS support
m Efficient on real-world workloads

m The end-to-end SW/HW stack for GPU evolves quickly
m A promising technique to explore novel designs

18/18

	Introduction
	Assumptions & Background
	Design & Implementation
	Evaluation & Experience
	Conclusion

