
Honeycomb: Secure and Efficient GPU Executions via Static Validation

Haohui Mai Jiacheng Zhao Hongren Zheng† Yiyang Zhao Zibin Liu
Mingyu Gao Cong Wang Huiming Cui Xiaobing Feng Christos Kozyrakis

PrivacyCore ICT,CAS Tsinghua† Stanford IDEA BUPT

1 / 18

AI on private data needs S&P solutions

AI is powerful
e.g. ChatGPT

Still security concerns
Private data: e.g. medical/financial
records
User does not trust 3rd party cloud

AI
Cloud
GPU

Pri. Data
User

2 / 18

GPU TEE: a pragmatic approach

In Cloud, User App can be harmed by
other Apps and the OS

Trusted Execution Environment (TEE)
provides isolation

Special CPU hardware: Intel SGX/TDX,
AMD SEV
Efficient: native speeds within enclave

App App

OS

CPU TEE

GPU

GPU TEE

Custom Unit

Custom Driver

3 / 18

GPU TEE: a pragmatic approach

In Cloud, User App can be harmed by
other Apps and the OS
Trusted Execution Environment (TEE)
provides isolation

Special CPU hardware: Intel SGX/TDX,
AMD SEV
Efficient: native speeds within enclave

App App

OS

CPU TEE

GPU

GPU TEE

Custom Unit

Custom Driver

3 / 18

GPU TEE: a pragmatic approach

GPU is powerful
Widely used by AI

We want GPU TEE
Won’t leak private data

Current proposals

Hardware modification: slow evolution
Driver-based: large TCB (>1M SLOC),
error-prone

App App

OS

CPU TEE

GPU

GPU TEE

Custom Unit

Custom Driver

3 / 18

GPU TEE: a pragmatic approach

GPU is powerful
Widely used by AI

We want GPU TEE
Won’t leak private data

Current proposals
Hardware modification: slow evolution

Driver-based: large TCB (>1M SLOC),
error-prone

App App

OS

CPU TEE

GPU

GPU TEE

Custom Unit

Custom Driver

3 / 18

GPU TEE: a pragmatic approach

GPU is powerful
Widely used by AI

We want GPU TEE
Won’t leak private data

Current proposals
Hardware modification: slow evolution
Driver-based: large TCB (>1M SLOC),
error-prone

App App

OS

CPU TEE

GPU

GPU TEE

Custom Unit

Custom Driver

3 / 18

Honeycomb: confining behaviors via static validation

Previous work: keep invariant
Either in hardware or driver

Our work: by static validation
On the proper interface

App App

OS / Driver

Security Monitor

CPU TEE

GPU

GPU TEE

Static Analysis

4 / 18

Honeycomb: confining behaviors via static validation

Flexible: Complement hardware limitations
Efficient:

Security checks at load time: 2%
overheads for BERT / NanoGPT.
Modest overall dev. efforts.

Secure: 18x smaller TCB compared to
Linux-based systems

App App

OS / Driver

Security Monitor

CPU TEE

GPU

GPU TEE

Static Analysis

4 / 18

Agenda

1 Introduction

2 Assumptions & Background

3 Design & Implementation

4 Evaluation & Experience

5 Conclusion

5 / 18

Threat Model

Adversary
Controls entire software stacks (OS /
compiler / hypervisor)
Has physical access of the hardware
Sniffs PCIe traffic
But cannot tamper the CPU or GPU
silicons

OS / Driver

CPU TEE

MEM

GPU

VRAM

PCIe

Trusted IO

6 / 18

Threat Model

Assumptions
CPU TEE (e.g., AMD SEV-SNP)
Discrete GPU with integrated memory
Trusted I/O paths: detailed in the paper
Side-channel attacks are out of scope

OS / Driver

CPU TEE
MEM

GPU
VRAM

PCIeTrusted IO

6 / 18

GPU is a discrete accelerator

Userspace queues
MemOp queue: Memcpy kernel / data
Cmd queue: Launch kernel

Kernel space driver
Initialize hardware and address space
Alloc/Multiplex device memory / queues

Q Q Drv.

CPU
Userspace Runtime

App App

GPU
VRAMKernel

MgmtCmd Memcpy

7 / 18

Agenda

1 Introduction

2 Assumptions & Background

3 Design & Implementation

4 Evaluation & Experience

5 Conclusion

8 / 18

Overview of Honeycomb

Keep invariant by static validation
On the proper interface
Regulating high-level semantics

SVSM: on Queue
Secure VM Service Module

Validator: ensure safe GPU kernel
Securiy Monitor: on Driver

Q

Cmd

Q

Mem

Drv.

CPU
Userspace Runtime

App App

GPU
VRAMKernel

MgmtCmd Memcpy

SVSM + V SM

9 / 18

Overview of Honeycomb

Keep invariant by static validation
On the proper interface
Regulating high-level semantics

SVSM: on Queue
Secure VM Service Module

Validator: ensure safe GPU kernel
Securiy Monitor: on Driver

Q
Cmd

Q
Mem

Drv.

CPU
Userspace Runtime

App App

GPU
VRAMKernel

MgmtCmd Memcpy

SVSM + V SM

9 / 18

Architecture of Honeycomb

Honeycomb and hardware are TCB
SVSM for SEV-SNP VM

SEV-SNP is an AMD CPU TEE feature
Regulating user app behavior

Validator
Ensure safe GPU kernels

SM for Sandbox VM
Regulating GPU driver

System-wide invariant: Efficient IPC
Between GPU kernels of Apps

SEV-SNP VM Sandbox VM

SVSM + V

Linux Guest

App

SM

Linux
GPU Drv.

Host OS + Cloud Hypervisor

GPU

10 / 18

SVSM / SM: intercepting at lowest level

Validate queue cmd / MMIO
To ensure

Validated kernels
Init sequences
Memory isolation
Secure memcpy

Remove OS kernel / GPU driver /
runtime from the TCB

Challenge: Recover sematics from MMIO
BTW: Found 5 new bugs in AMDGPU,
deployed in Linux 5.19

void check_launch_kernel(
AddrSpace *addr,
DispatchPkt *p) {
if(!validated(addr,

p->kernel_object))
abort_user();

...

11 / 18

SVSM / SM: intercepting at lowest level

Validate queue cmd / MMIO
To ensure

Validated kernels
Init sequences
Memory isolation
Secure memcpy

Remove OS kernel / GPU driver /
runtime from the TCB
Challenge: Recover sematics from MMIO
BTW: Found 5 new bugs in AMDGPU,
deployed in Linux 5.19

void check_launch_kernel(
AddrSpace *addr,
DispatchPkt *p) {
if(!validated(addr,

p->kernel_object))
abort_user();

...

11 / 18

Validator: analysing binaries

Invariant: partitioned addr. space
Integrity: analyse memory access range

e.g. No write to protected region
Validate GPU kernel at load time

Modest overhead
On binaries: remove compiler from TCB

void fill(int *base ,
int n, int b) {

u32 dim = blockDim.x ;
u32 gid = blockIdx.x;
u32 lid = threadIdx.x;
u32 tid = gid * dim + lid;
if (tid < n)
base[tid] = b;

blockDim.x == 256
0 ≤ blockIdx.x < 128
0 ≤ threadIdx.x < 256

Pr
iva

te
RW

RO
Pr

ot
ec

te
dV

0110

248-1

12 / 18

Polyhedral Analysis + GEMM: ,

Range checks using polyhedral analysis
Techniques from auto parallelization
e.g. Given base , conclude base[tid]

Minimal overheads for ML workloads
Mostly regular

Complex programs: add runtime checks
e.g. indirect heap references a[b[i]]

Impl challenge: complexity of analysing
directly on binaries

base

base[tid]

ij

k

Pr
iva

te
RW

RO
Pr

ot
ec

te
d

248-1

13 / 18

Efficient IPC: secure direct memcpy

Useful primitive for multi-stage pipelines
Components from multiple vendors

Validation enforces proper IPC region
Trusted primitive send()
Sender’s Protected
mmap to receivers’s RO
Avoid double encryption/decryption
across the boundary of enclaves

Pr
iva

te
RW

RO
Pr

ot
ec

te
d

248-1

Pr
iva

te
RW

RO
Pr

ot
ec

te
d

248-1

send()

mmap

14 / 18

Agenda

1 Introduction

2 Assumptions & Background

3 Design & Implementation

4 Evaluation & Experience

5 Conclusion

15 / 18

Security Monitors minimize TCB

2 EPYC 7433 CPUs, 1 AMD RX6900XT
GPU
Linux 5.17, ROCm 5.4.0
TCB of Honeycomb (∼82 KLOC): 18x
smaller

Linux kernel ∼1.5 MLOC
Core functionalities
Drivers (AMDGPU) and libraries
(DRM & TTM)

Userspace runtime (ROCm) ∼400 KLOC

SEV-SNP VM Sandbox VM

SVSM + V

Linux Guest

App

SM

Linux
GPU Drv.

Host OS + Cloud Hypervisor

GPU

16 / 18

Static validation is efficient

5 benchmark suites, HPC, CV, ML
(DNN/Transformer). 23 apps in total
Relative perf from 0.71-1.31 compared to
Linux stack

breakdowns in paper
Efficient on ML workloads

2% overheads for BERT / NanoGPT
Spent most time on GEMM kernels

polyhedral analysis works well
Modest dev. effort to pass validations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
1.

tp
ac

f
10

3.
st

en
cil

10
4.

lb
m

11
0.

fft
11

2.
sp

m
v

11
4.

m
riq

11
6.

hi
st

o
11

7.
bf

s
11

8.
cu

tc
p

12
0.

km
ea

ns
12

1.
la

va
m

d
12

2.
cf

d
12

3.
nw

12
4.

ho
ts

po
t

12
5.

lu
d

12
6.

ge
12

7.
sr

ad
12

8.
he

ar
tw

al
l

14
0.

bp
lu

st
re

e
Re

sN
et

Ca
nn

y
BE

RT
N

an
oG

PT

Re
la

tiv
e

tim
e

17 / 18

Conclusion

Honeycomb supports secure and efficient GPU executions
Static analysis (Validation) is a practical and flexible technique for GPU apps

Honeycomb enhances security via co-designing validation + OS support
Efficient on real-world workloads

The end-to-end SW/HW stack for GPU evolves quickly
A promising technique to explore novel designs

18 / 18

	Introduction
	Assumptions & Background
	Design & Implementation
	Evaluation & Experience
	Conclusion

