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AI on private data needs S&P solutions

AI is powerful
e.g. ChatGPT

Still security concerns
Private data: e.g. medical/financial
records
User does not trust 3rd party cloud
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GPU TEE: a pragmatic approach

In Cloud, User App can be harmed by
other Apps and the OS

Trusted Execution Environment (TEE)
provides isolation

Special CPU hardware: Intel SGX/TDX,
AMD SEV
Efficient: native speeds within enclave
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GPU TEE: a pragmatic approach

GPU is powerful
Widely used by AI

We want GPU TEE
Won’t leak private data

Current proposals

Hardware modification: slow evolution
Driver-based: large TCB (>1M SLOC),
error-prone
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Honeycomb: confining behaviors via static validation

Previous work: keep invariant
Either in hardware or driver

Our work: by static validation
On the proper interface
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Honeycomb: confining behaviors via static validation

Flexible: Complement hardware limitations
Efficient:

Security checks at load time: 2%
overheads for BERT / NanoGPT.
Modest overall dev. efforts.

Secure: 18x smaller TCB compared to
Linux-based systems
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Threat Model

Adversary
Controls entire software stacks (OS /
compiler / hypervisor)
Has physical access of the hardware
Sniffs PCIe traffic
But cannot tamper the CPU or GPU
silicons
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Threat Model

Assumptions
CPU TEE (e.g., AMD SEV-SNP)
Discrete GPU with integrated memory
Trusted I/O paths: detailed in the paper
Side-channel attacks are out of scope

OS / Driver

CPU TEE
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GPU is a discrete accelerator

Userspace queues
MemOp queue: Memcpy kernel / data
Cmd queue: Launch kernel

Kernel space driver
Initialize hardware and address space
Alloc/Multiplex device memory / queues

Q Q Drv.

CPU
Userspace Runtime

App App

GPU
VRAMKernel

MgmtCmd Memcpy
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Overview of Honeycomb

Keep invariant by static validation
On the proper interface
Regulating high-level semantics

SVSM: on Queue
Secure VM Service Module

Validator: ensure safe GPU kernel
Securiy Monitor: on Driver

Q
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SVSM + V SM
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Architecture of Honeycomb

Honeycomb and hardware are TCB
SVSM for SEV-SNP VM

SEV-SNP is an AMD CPU TEE feature
Regulating user app behavior

Validator
Ensure safe GPU kernels

SM for Sandbox VM
Regulating GPU driver

System-wide invariant: Efficient IPC
Between GPU kernels of Apps

SEV-SNP VM Sandbox VM

SVSM + V

Linux Guest

App

SM

Linux
GPU Drv.

Host OS + Cloud Hypervisor

GPU
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SVSM / SM: intercepting at lowest level

Validate queue cmd / MMIO
To ensure

Validated kernels
Init sequences
Memory isolation
Secure memcpy

Remove OS kernel / GPU driver /
runtime from the TCB

Challenge: Recover sematics from MMIO
BTW: Found 5 new bugs in AMDGPU,
deployed in Linux 5.19

void check_launch_kernel(
AddrSpace *addr,
DispatchPkt *p) {
if(!validated(addr,

p->kernel_object))
abort_user();

...
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Validator: analysing binaries

Invariant: partitioned addr. space
Integrity: analyse memory access range

e.g. No write to protected region
Validate GPU kernel at load time

Modest overhead
On binaries: remove compiler from TCB

void fill( int *base ,
int n, int b ) {

u32 dim = blockDim.x ;
u32 gid = blockIdx.x;
u32 lid = threadIdx.x;
u32 tid = gid * dim + lid;
if (tid < n)
base[tid] = b;

blockDim.x == 256
0 ≤ blockIdx.x < 128
0 ≤ threadIdx.x < 256
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Polyhedral Analysis + GEMM: ,

Range checks using polyhedral analysis
Techniques from auto parallelization
e.g. Given base , conclude base[tid]

Minimal overheads for ML workloads
Mostly regular

Complex programs: add runtime checks
e.g. indirect heap references a[b[i]]

Impl challenge: complexity of analysing
directly on binaries
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Efficient IPC: secure direct memcpy

Useful primitive for multi-stage pipelines
Components from multiple vendors

Validation enforces proper IPC region
Trusted primitive send()
Sender’s Protected
mmap to receivers’s RO
Avoid double encryption/decryption
across the boundary of enclaves
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Security Monitors minimize TCB

2 EPYC 7433 CPUs, 1 AMD RX6900XT
GPU
Linux 5.17, ROCm 5.4.0
TCB of Honeycomb (∼82 KLOC): 18x
smaller

Linux kernel ∼1.5 MLOC
Core functionalities
Drivers (AMDGPU) and libraries
(DRM & TTM)

Userspace runtime (ROCm) ∼400 KLOC

SEV-SNP VM Sandbox VM

SVSM + V

Linux Guest

App

SM

Linux
GPU Drv.

Host OS + Cloud Hypervisor

GPU
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Static validation is efficient

5 benchmark suites, HPC, CV, ML
(DNN/Transformer). 23 apps in total
Relative perf from 0.71-1.31 compared to
Linux stack

breakdowns in paper
Efficient on ML workloads

2% overheads for BERT / NanoGPT
Spent most time on GEMM kernels

polyhedral analysis works well
Modest dev. effort to pass validations
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Conclusion

Honeycomb supports secure and efficient GPU executions
Static analysis (Validation) is a practical and flexible technique for GPU apps

Honeycomb enhances security via co-designing validation + OS support
Efficient on real-world workloads

The end-to-end SW/HW stack for GPU evolves quickly
A promising technique to explore novel designs
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