Learn Git The Not So Super Hard Way!

Zenithal

2022-03-31

!Credit to https://github.com/b1f6clc4/learn-git-the-super-hard-way
=D e, e



Why this

m Learning git is painful
= Too many concepts (commit, branch, stage, index)
m Too many commands (clone, pull, push)



Why this

m Learning git is painful

= Too many concepts (commit, branch, stage, index)
m Too many commands (clone, pull, push)

m State machine too complex

= You often do not know what state you are in
m Conflict! Help me ERIN!



Why this

m Learning git is painful

= Too many concepts (commit, branch, stage, index)
= Too many commands (clone, pull, push)

m State machine too complex

= You often do not know what state you are in
m Conflict! Help me ERIN!

m Learning about commands is not enough

m You often do not know what’s going on
m Let's break it down to basic elements



Why this

Learning git is painful

m Too many concepts (commit, branch, stage, index)
m Too many commands (clone, pull, push)
m State machine too complex

= You often do not know what state you are in
m Conflict! Help me ERIN!

Learning about commands is not enough

m You often do not know what's going on
m Let's break it down to basic elements

The super hard way is super easy
m You change the file, you know what's going on






git repo structure

m git repo
m often the .git
m often contains HEAD, config
m worktree
m the file
m often contains README.md, main.c, main.h
m worktree is just a checkout of the git repo
m you can re-contruct your worktree from the git repo
m the git repo is essential, but worktree is not



git init

m mkdir .git

m mkdir .git/objects
m Must have

m mkdir .git/refs
m Must have

m echo 'ref: refs/heads/master' > .git/HEAD
m Establish HEAD ref

m HEAD points to .git/refs/heads/master (Even though it does not exist now)
m Side note: refs/heads/main

m config, hooks, info, etc are not necessary

m Now you can git status to check the status






objects

m You have created .git/objects, then what are objects



objects

m You have created .git/objects, then what are objects
m Four types of objects



objects

m You have created .git/objects, then what are objects
m Four types of objects
m blob: file content



objects

m You have created .git/objects, then what are objects
m Four types of objects
m blob: file content
m tree: folder
m Side note: what's in folder in file system

m filename (stored here instead of in blob!)
m hash of blobs/trees (folder structure!)



objects

m You have created .git/objects, then what are objects
m Four types of objects
m blob: file content
m tree: folder
m Side note: what's in folder in file system

m filename (stored here instead of in blob!)
m hash of blobs/trees (folder structure!)
m commit: a state of the root folder
®m contains one specific tree
m parent(s): other commit(s)
® author/committer/commit message: meta data



objects

m You have created .git/objects, then what are objects
m Four types of objects

m blob: file content
m tree: folder

m Side note: what's in folder in file system
m filename (stored here instead of in blob!)
m hash of blobs/trees (folder structure!)

m commit: a state of the root folder

®m contains one specific tree
m parent(s): other commit(s)
® author/committer/commit message: meta data

m tag: will not introduce today



blob

m blob: file content



blob

m blob: file content
m echo 'hello' | git hash-object -t blob --stdin -w

m Write a blob/file whose content is 'hello'
m hash that content to an object in type blob from stdin then write to the object database
m Output: ce013625030ba8dba906£f756967f9e9ca394464a, the hash of the object



blob

m blob: file content
m echo 'hello' | git hash-object -t blob --stdin -w

m Write a blob/file whose content is 'hello'
m hash that content to an object in type blob from stdin then write to the object database
m Output: ce013625030ba8dba906f756967f9e9ca394464a, the hash of the object

m cat .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a

m Output: xKOROcH, compressed content of hello
m note the object path!



blob

m blob: file content

m echo 'hello' | git hash-object -t blob --stdin -w
m Write a blob/file whose content is 'hello'

m hash that content to an object in type blob from stdin then write to the object database
m Output: ce013625030ba8dba906f756967f9e9ca394464a, the hash of the object

m cat .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a

m Output: xKOROcH, compressed content of hello
m note the object path!

m Check the actual content
$ printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a \
| gunzip -dc 2>/dev/null | xxd
# 00000000: 626¢c 6f62 2036 0068 656c 6c6f Oa blob 6.hello.



blob (cont'd)

m Painful using raw command? Of course we have higher level instructions
m git cat-file blob ceO1
m Output: hello

m git show ceO1
m Output: hello



tree

m tree: folder



tree

m tree: folder
m Create a tree

(printf '100644 name.ext\x00';

echo '0: ce013625030ba8dba906f756967f9e9cal394464a' | xxd -rp -c 256;
printf '100755 name2.ext\x00';

echo '0: ce013625030ba8dba906f756967f9e9cal394464a' | xxd -rp -c 256) \
| git hash-object -t tree --stdin -w

# 58417991a0e30203e7e9b938f62a9%9a6f9cel0ada



tree

m tree: folder

m Create a tree
(printf '100644 name.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9cal394464a' | xxd -rp -c 256;
printf '100755 name2.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9cal394464a' | xxd -rp -c 256) \
| git hash-object -t tree --stdin -w
# 58417991a0e30203e7e9b938f62a9%9a6f9cel0ada

m You can also (another format)

git mktree --missing <<EOF

100644 blob ce013625030ba8dba906f756967f9e9ca394464a$ (printf '\t')name.ex!
100755 blob ce013625030ba8dba906f756967f9e9ca394464a$ (printf '\t')name?2.e:
EOF

# 58417991a0e30203e7e9b938£62a9a6f9cel0a9a



tree (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9cel0aa \
| gunzip -dc 2>/dev/null | xxd



tree (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9cel0aa \
| gunzip -dc 2>/dev/null | xxd

B git cat-file tree 5841 | xxd



tree (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9cel0aa \

| gunzip -dc 2>/dev/null | xxd
B git cat-file tree 5841 | xxd
m git 1s-tree 5841 (Compare with mktree above)

2022-03-31 11/37



tree (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9cel0aa \

| gunzip -dc 2>/dev/null | xxd
B git cat-file tree 5841 | xxd
m git 1s-tree 5841 (Compare with mktree above)

m git show 5841 (A more simple version)



commit

Directly create file

git hash-object -t commit --stdin -w <<EOF

tree 58417991a0e30203e7e9b938f62a9a6f9cellada

author blf6clc4 <blf6clc4@gmail.com> 1514736000 +0800
committer blf6clc4 <blf6clc4@gmail.com> 1514736000 +0800

The commit message

May have multiple

lines!

EQF

# d4dafde7cd9248ef94c0400983d51122099d312a



commit (cont'd)
Or from high level command

GIT_AUTHOR_NAME=b1f6clc4 \
GIT_AUTHOR_EMAIL=b1f6clc4@gmail.com \
GIT_AUTHOR_DATE='1600000000 +0800"' \
GIT_COMMITTER_NAME=b1f6clc4 \
GIT_COMMITTER_EMAIL=b1f6clc4@gmail.com \
GIT_COMMITTER_DATE='1600000000 +0800"' \
git commit-tree 5841 -p d4da <<EQOF
Message may be read

from stdin

or by the option '-m'

EOF

# efd4£82£f6151bd20b167794bc57c66bbf82ce7dd

That's why you need to git config --global user.email and user.name



commit (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - ./objects/ef/d4f82£6151bd20b167794bc57c66bbf82ce7dd \
| gunzip -dc 2>/dev/null | xxd

2https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
. e Ty



commit (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - ./objects/ef/d4f82£6151bd20b167794bc57c66bbf82ce7dd \
| gunzip -dc 2>/dev/null | xxd

m git cat-file commit efd4

2https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
. e Ty



commit (cont'd)

m Directly inspect file content

printf '\x1f\x8b\x08\x00\x00\x00\x00\x00"' \
| cat - ./objects/ef/d4f82£6151bd20b167794bc57c66bbf82ce7dd \

| gunzip -dc 2>/dev/null | xxd
m git cat-file commit efd4
m git show efd4d (A more simple version, in diff format)

= Note: commits are snapshots, not diffs/patchs?

2https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/



Lucky commit

Feeling hash too boring?

Try lucky commit!3

$ git log

1£f6383a Some commit
$ lucky_commit

$ git log

0000000 Some commit

m Note the commit msg in the prev slide, we can change it to mine a lucky hash

3https://github.com/not-an-aardvark/lucky-commit






ref

m ref is a convenient reference to one specific commit/other ref

in .git/ref

two types of ref

m direct ref
m indirect ref, e.g. HEAD (often the case)

m two common refs we will introduce today

m heads: local branch
= remotes: remote branch



local branch and direct ref

m Create file (not recommended as no reflog)

mkdir -p .git/refs/heads/
echo d4dafde7cd9248ef94c0400983d51122099d312a > .git/refs/heads/brl



local branch and direct ref

m Create file (not recommended as no reflog)

mkdir -p .git/refs/heads/
echo d4dafde7cd9248ef94c0400983d51122099d312a > .git/refs/heads/brl

m The following command will leave reflog in .git/log/refs/heads/brl
m git update-ref --no-deref -m 'Reason for update' refs/heads/brl d4da
m git branch -f brl d4da



about reflog

m Record all the changes to your ref
m Useful when you accidently switch to another place

git rebase master

m git checkout -B master origin/master

m then you want to switch to old tree for some reason
m reflog shows the commit that one ref was

m Demo of my working dir: lots of reflogs



indirect ref

m Remember when you init
m echo 'ref: refs/heads/master' > .git/HEAD

m This format is indirect ref






index

Untracked

Unmodified Modified

Add the file

Edit the file |

Stage the file

Remove the file

Commit

index stores what to be commited when you git commit
file at .git/index

L]
L]
m often we call things in index as staged (the figure above)
m a complex database

L]

contains many things, like filename, mode, hash, mtime, etc



manipulate index

m it is hard to manupulate index

we study common cases here

m git add stores the content into index

m mark them ready for commit



manipulate index

m it is hard to manupulate index

we study common cases here

m git add stores the content into index

mark them ready for commit

1. git add; git status
m the file you added is ready for commit



manipulate index

m it is hard to manupulate index

we study common cases here

git add stores the content into index

mark them ready for commit

1. git add; git status
m the file you added is ready for commit
m 2. git add; modify; git status
m the file content you added is ready for commit
m the new file content you did not add is not visible to index
m modify will not be contained in commit



manipulate index

m it is hard to manupulate index
m we study common cases here

m git add stores the content into index

mark them ready for commit

1. git add; git status
m the file you added is ready for commit
m 2. git add; modify; git status
m the file content you added is ready for commit
m the new file content you did not add is not visible to index
m modify will not be contained in commit
m 3. git add; rm; git status; git restore

m even though file is deleted, it has a copy in index
m if you accidently rm -rf *, you can restore your file!






switch /checkout

m Recall that .git/HEAD is a ref

m This ref is for your worktree

Recall your worktree is your actual content

Change the content of your worktree by manipulating HEAD



switch /checkout (cont'd)

m Most famous: git checkout master
m Make HEAD point to refs/heads/master
Then checkout the content to your worktree
That's why it is named checkout
Actually an old syntax, recommend using switch now
git switch master



switch /checkout (cont'd)

m Most famous: git checkout master
m Make HEAD point to refs/heads/master
m Then checkout the content to your worktree
m That's why it is named checkout
m Actually an old syntax, recommend using switch now
m git switch master

m Yet most famous: git reset --hard HEAD~1

m Change HEAD to HEAD~1 (the former commit of HEAD)
m Checkout the content to your worktree
m Note: there are reset --soft/--mixed, learn them by yourself






remotes

Recall that we have talked about .git/refs/remotes

m Since we have local ref(branch), we can also have remote ref(branch)
m If no remote branch, it is not a distributed version control system

m How to sync them?

m pull commit from remote to local

m push commit from local to remote

m So the concept of commit is very useful



config remote

If you want to have remote branch, you must have a remote first

edit .git/config to add them
or git remote add origin git@github.com:xxx/yyy

m origin is a convention, you can use other name
= You can have multiple remote

m Demo of my repo



fetch remote

m git fetch origin master

m Fetch the master ref from origin
m You can check .git/refs/remotes/origin/master now



fetch remote

m git fetch origin master

m Fetch the master ref from origin

m You can check .git/refs/remotes/origin/master now
m git pull origin master

m despite git fetch, it tries to update your local ref

m Update .git/refs/remotes/origin/master

m and update .git/refs/heads/master accordingly

m The relationship is recorded in .git/config



fetch remote

mgit
||

mgit

fetch origin master

Fetch the master ref from origin

You can check .git/refs/remotes/origin/master now
pull origin master

despite git fetch, it tries to update your local ref
Update .git/refs/remotes/origin/master

and update .git/refs/heads/master accordingly

The relationship is recorded in .git/config

pull

short hand for the above, according to your .git/config



fetch remote

mgit
u

mgit

fetch origin master

Fetch the master ref from origin

You can check .git/refs/remotes/origin/master now
pull origin master

despite git fetch, it tries to update your local ref
Update .git/refs/remotes/origin/master
and update .git/refs/heads/master accordingly
The relationship is recorded in .git/config

pull

short hand for the above, according to your .git/config
clone

Actually a short hand for

git init

git remote add

git pull



push remote

m git push origin master
m Sync your local branch master to remote branch master



push remote

m git push origin master
m Sync your local branch master to remote branch master

m git push
m short hand for the above, according to your .git/config



push remote

m git push origin master

m Sync your local branch master to remote branch master
m git push

m short hand for the above, according to your .git/config
m New branch then git push -u origin :new-branch

m Add a new ref in the remote
m At the same time set the upstream to new-branch
m Check your .git/config now






merge

= Now you have commits, you have refs
m How do you merge refs/branches together?
m recall that a branch points to a commit, a commit contains a specific tree

m Namely we need to merge tree, then we need to merge blob first

How to merge blob?



two way merge

= Two way means the algo can only see two files (our and their)

m Let's setup the file as chapter6.md

m Two way merge of £ileB and fileC
m The change can be fileC has removed B in the first line and added C in the last line
m The change can be fileB has added B in the first line and deleted C in the last line
m Do not know how to merge, abort

m It is not useful



three way merge

m Three way merge means the algo can see three files (base, our and their)
m Three way merge of fileB and fileC with fileA as base

Compared with fileA, fileB added B in the first line
Compared with fileA, fileC added C in the last line
No conflict in changes

git merge-file --stdout <our> <base> <their>
git merge-file --stdout fileC fileA fileB
lineBB

...some stuff...

lineCC

2022-03-31

35/37



three way merge (cont'd)

m What if they both modify the same line? Conflict!
m Usually need manual involvement

m Eg. git merge-file --stdout fileD fileA fileB
m Compared with fileA, fileD added D in the first line
m Compared with fileA, fileB added B in the first line
= Output
<<<<<<< fileD
1lineBD

lineBB

>>>>>>> fileB
...some stuff...
lineC



How to resolve conflict

m Remove all the helper line
m Leave the actual content

1ineBBD
...some stuff...
lineC
m Or if you are aware of what you are doing

m git merge-file --ours --stdout fileD fileA fileB
m Keep our change, discard theirs

m git merge-file --theirs --stdout fileD fileA fileB
m Keep their change, discard ours

m git merge-file --union --stdout fileD fileA fileB
m Keep both changes, concat them



	init
	objects
	ref
	index
	switch/checkout
	pull/clone/push
	merge

