
Learn Git The Not So Super Hard Way1

Zenithal

2022-03-31

1Credit to https://github.com/b1f6c1c4/learn-git-the-super-hard-way
zenithal Learn Git 2022-03-31 1 / 37

Why this

Learning git is painful
Too many concepts (commit, branch, stage, index)
Too many commands (clone, pull, push)

State machine too complex
You often do not know what state you are in
Conflict! Help me ERIN!

Learning about commands is not enough
You often do not know what’s going on
Let’s break it down to basic elements

The super hard way is super easy
You change the file, you know what’s going on

zenithal Learn Git 2022-03-31 2 / 37

Why this

Learning git is painful
Too many concepts (commit, branch, stage, index)
Too many commands (clone, pull, push)

State machine too complex
You often do not know what state you are in
Conflict! Help me ERIN!

Learning about commands is not enough
You often do not know what’s going on
Let’s break it down to basic elements

The super hard way is super easy
You change the file, you know what’s going on

zenithal Learn Git 2022-03-31 2 / 37

Why this

Learning git is painful
Too many concepts (commit, branch, stage, index)
Too many commands (clone, pull, push)

State machine too complex
You often do not know what state you are in
Conflict! Help me ERIN!

Learning about commands is not enough
You often do not know what’s going on
Let’s break it down to basic elements

The super hard way is super easy
You change the file, you know what’s going on

zenithal Learn Git 2022-03-31 2 / 37

Why this

Learning git is painful
Too many concepts (commit, branch, stage, index)
Too many commands (clone, pull, push)

State machine too complex
You often do not know what state you are in
Conflict! Help me ERIN!

Learning about commands is not enough
You often do not know what’s going on
Let’s break it down to basic elements

The super hard way is super easy
You change the file, you know what’s going on

zenithal Learn Git 2022-03-31 2 / 37

init

zenithal Learn Git 2022-03-31 3 / 37

git repo structure

git repo
often the .git
often contains HEAD, config

worktree
the file
often contains README.md, main.c, main.h
worktree is just a checkout of the git repo
you can re-contruct your worktree from the git repo
the git repo is essential, but worktree is not

zenithal Learn Git 2022-03-31 4 / 37

git init

mkdir .git
mkdir .git/objects

Must have
mkdir .git/refs

Must have
echo 'ref: refs/heads/master' > .git/HEAD

Establish HEAD ref
HEAD points to .git/refs/heads/master (Even though it does not exist now)
Side note: refs/heads/main

config, hooks, info, etc are not necessary
Now you can git status to check the status

zenithal Learn Git 2022-03-31 5 / 37

objects

zenithal Learn Git 2022-03-31 6 / 37

objects

You have created .git/objects, then what are objects

Four types of objects

blob: file content
tree: folder

Side note: what’s in folder in file system
filename (stored here instead of in blob!)
hash of blobs/trees (folder structure!)

commit: a state of the root folder
contains one specific tree
parent(s): other commit(s)
author/committer/commit message: meta data

tag: will not introduce today

zenithal Learn Git 2022-03-31 7 / 37

objects

You have created .git/objects, then what are objects
Four types of objects

blob: file content
tree: folder

Side note: what’s in folder in file system
filename (stored here instead of in blob!)
hash of blobs/trees (folder structure!)

commit: a state of the root folder
contains one specific tree
parent(s): other commit(s)
author/committer/commit message: meta data

tag: will not introduce today

zenithal Learn Git 2022-03-31 7 / 37

objects

You have created .git/objects, then what are objects
Four types of objects

blob: file content

tree: folder
Side note: what’s in folder in file system
filename (stored here instead of in blob!)
hash of blobs/trees (folder structure!)

commit: a state of the root folder
contains one specific tree
parent(s): other commit(s)
author/committer/commit message: meta data

tag: will not introduce today

zenithal Learn Git 2022-03-31 7 / 37

objects

You have created .git/objects, then what are objects
Four types of objects

blob: file content
tree: folder

Side note: what’s in folder in file system
filename (stored here instead of in blob!)
hash of blobs/trees (folder structure!)

commit: a state of the root folder
contains one specific tree
parent(s): other commit(s)
author/committer/commit message: meta data

tag: will not introduce today

zenithal Learn Git 2022-03-31 7 / 37

objects

You have created .git/objects, then what are objects
Four types of objects

blob: file content
tree: folder

Side note: what’s in folder in file system
filename (stored here instead of in blob!)
hash of blobs/trees (folder structure!)

commit: a state of the root folder
contains one specific tree
parent(s): other commit(s)
author/committer/commit message: meta data

tag: will not introduce today

zenithal Learn Git 2022-03-31 7 / 37

objects

You have created .git/objects, then what are objects
Four types of objects

blob: file content
tree: folder

Side note: what’s in folder in file system
filename (stored here instead of in blob!)
hash of blobs/trees (folder structure!)

commit: a state of the root folder
contains one specific tree
parent(s): other commit(s)
author/committer/commit message: meta data

tag: will not introduce today

zenithal Learn Git 2022-03-31 7 / 37

blob

blob: file content

echo 'hello' | git hash-object -t blob --stdin -w
Write a blob/file whose content is 'hello'
hash that content to an object in type blob from stdin then write to the object database
Output: ce013625030ba8dba906f756967f9e9ca394464a, the hash of the object

cat .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a
Output: xKOR0cH, compressed content of hello
note the object path!

Check the actual content
$ printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a \
| gunzip -dc 2>/dev/null | xxd
00000000: 626c 6f62 2036 0068 656c 6c6f 0a blob 6.hello.

zenithal Learn Git 2022-03-31 8 / 37

blob

blob: file content
echo 'hello' | git hash-object -t blob --stdin -w

Write a blob/file whose content is 'hello'
hash that content to an object in type blob from stdin then write to the object database
Output: ce013625030ba8dba906f756967f9e9ca394464a, the hash of the object

cat .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a
Output: xKOR0cH, compressed content of hello
note the object path!

Check the actual content
$ printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a \
| gunzip -dc 2>/dev/null | xxd
00000000: 626c 6f62 2036 0068 656c 6c6f 0a blob 6.hello.

zenithal Learn Git 2022-03-31 8 / 37

blob

blob: file content
echo 'hello' | git hash-object -t blob --stdin -w

Write a blob/file whose content is 'hello'
hash that content to an object in type blob from stdin then write to the object database
Output: ce013625030ba8dba906f756967f9e9ca394464a, the hash of the object

cat .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a
Output: xKOR0cH, compressed content of hello
note the object path!

Check the actual content
$ printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a \
| gunzip -dc 2>/dev/null | xxd
00000000: 626c 6f62 2036 0068 656c 6c6f 0a blob 6.hello.

zenithal Learn Git 2022-03-31 8 / 37

blob

blob: file content
echo 'hello' | git hash-object -t blob --stdin -w

Write a blob/file whose content is 'hello'
hash that content to an object in type blob from stdin then write to the object database
Output: ce013625030ba8dba906f756967f9e9ca394464a, the hash of the object

cat .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a
Output: xKOR0cH, compressed content of hello
note the object path!

Check the actual content
$ printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/ce/013625030ba8dba906f756967f9e9ca394464a \
| gunzip -dc 2>/dev/null | xxd
00000000: 626c 6f62 2036 0068 656c 6c6f 0a blob 6.hello.

zenithal Learn Git 2022-03-31 8 / 37

blob (cont’d)

Painful using raw command? Of course we have higher level instructions
git cat-file blob ce01

Output: hello
git show ce01

Output: hello

zenithal Learn Git 2022-03-31 9 / 37

tree

tree: folder

Create a tree
(printf '100644 name.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9ca394464a' | xxd -rp -c 256;
printf '100755 name2.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9ca394464a' | xxd -rp -c 256) \
| git hash-object -t tree --stdin -w
58417991a0e30203e7e9b938f62a9a6f9ce10a9a
You can also (another format)
git mktree --missing <<EOF
100644 blob ce013625030ba8dba906f756967f9e9ca394464a$(printf '\t')name.ext
100755 blob ce013625030ba8dba906f756967f9e9ca394464a$(printf '\t')name2.ext
EOF
58417991a0e30203e7e9b938f62a9a6f9ce10a9a

zenithal Learn Git 2022-03-31 10 / 37

tree

tree: folder
Create a tree
(printf '100644 name.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9ca394464a' | xxd -rp -c 256;
printf '100755 name2.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9ca394464a' | xxd -rp -c 256) \
| git hash-object -t tree --stdin -w
58417991a0e30203e7e9b938f62a9a6f9ce10a9a

You can also (another format)
git mktree --missing <<EOF
100644 blob ce013625030ba8dba906f756967f9e9ca394464a$(printf '\t')name.ext
100755 blob ce013625030ba8dba906f756967f9e9ca394464a$(printf '\t')name2.ext
EOF
58417991a0e30203e7e9b938f62a9a6f9ce10a9a

zenithal Learn Git 2022-03-31 10 / 37

tree

tree: folder
Create a tree
(printf '100644 name.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9ca394464a' | xxd -rp -c 256;
printf '100755 name2.ext\x00';
echo '0: ce013625030ba8dba906f756967f9e9ca394464a' | xxd -rp -c 256) \
| git hash-object -t tree --stdin -w
58417991a0e30203e7e9b938f62a9a6f9ce10a9a
You can also (another format)
git mktree --missing <<EOF
100644 blob ce013625030ba8dba906f756967f9e9ca394464a$(printf '\t')name.ext
100755 blob ce013625030ba8dba906f756967f9e9ca394464a$(printf '\t')name2.ext
EOF
58417991a0e30203e7e9b938f62a9a6f9ce10a9a

zenithal Learn Git 2022-03-31 10 / 37

tree (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9ce10a9a \
| gunzip -dc 2>/dev/null | xxd

git cat-file tree 5841 | xxd
git ls-tree 5841 (Compare with mktree above)
git show 5841 (A more simple version)

zenithal Learn Git 2022-03-31 11 / 37

tree (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9ce10a9a \
| gunzip -dc 2>/dev/null | xxd
git cat-file tree 5841 | xxd

git ls-tree 5841 (Compare with mktree above)
git show 5841 (A more simple version)

zenithal Learn Git 2022-03-31 11 / 37

tree (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9ce10a9a \
| gunzip -dc 2>/dev/null | xxd
git cat-file tree 5841 | xxd
git ls-tree 5841 (Compare with mktree above)

git show 5841 (A more simple version)

zenithal Learn Git 2022-03-31 11 / 37

tree (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - .git/objects/58/417991a0e30203e7e9b938f62a9a6f9ce10a9a \
| gunzip -dc 2>/dev/null | xxd
git cat-file tree 5841 | xxd
git ls-tree 5841 (Compare with mktree above)
git show 5841 (A more simple version)

zenithal Learn Git 2022-03-31 11 / 37

commit

Directly create file

git hash-object -t commit --stdin -w <<EOF
tree 58417991a0e30203e7e9b938f62a9a6f9ce10a9a
author b1f6c1c4 <b1f6c1c4@gmail.com> 1514736000 +0800
committer b1f6c1c4 <b1f6c1c4@gmail.com> 1514736000 +0800

The commit message
May have multiple
lines!
EOF
d4dafde7cd9248ef94c0400983d51122099d312a

zenithal Learn Git 2022-03-31 12 / 37

commit (cont’d)
Or from high level command

GIT_AUTHOR_NAME=b1f6c1c4 \
GIT_AUTHOR_EMAIL=b1f6c1c4@gmail.com \
GIT_AUTHOR_DATE='1600000000 +0800' \
GIT_COMMITTER_NAME=b1f6c1c4 \
GIT_COMMITTER_EMAIL=b1f6c1c4@gmail.com \
GIT_COMMITTER_DATE='1600000000 +0800' \
git commit-tree 5841 -p d4da <<EOF
Message may be read
from stdin
or by the option '-m'
EOF
efd4f82f6151bd20b167794bc57c66bbf82ce7dd

That’s why you need to git config --global user.email and user.name
zenithal Learn Git 2022-03-31 13 / 37

commit (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - ./objects/ef/d4f82f6151bd20b167794bc57c66bbf82ce7dd \
| gunzip -dc 2>/dev/null | xxd

git cat-file commit efd4
git show efd4 (A more simple version, in diff format)
Note: commits are snapshots, not diffs/patchs2

2https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
zenithal Learn Git 2022-03-31 14 / 37

commit (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - ./objects/ef/d4f82f6151bd20b167794bc57c66bbf82ce7dd \
| gunzip -dc 2>/dev/null | xxd
git cat-file commit efd4

git show efd4 (A more simple version, in diff format)
Note: commits are snapshots, not diffs/patchs2

2https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
zenithal Learn Git 2022-03-31 14 / 37

commit (cont’d)

Directly inspect file content
printf '\x1f\x8b\x08\x00\x00\x00\x00\x00' \
| cat - ./objects/ef/d4f82f6151bd20b167794bc57c66bbf82ce7dd \
| gunzip -dc 2>/dev/null | xxd
git cat-file commit efd4
git show efd4 (A more simple version, in diff format)
Note: commits are snapshots, not diffs/patchs2

2https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
zenithal Learn Git 2022-03-31 14 / 37

Lucky commit

Feeling hash too boring?
Try lucky commit!3

$ git log
1f6383a Some commit
$ lucky_commit
$ git log
0000000 Some commit
Note the commit msg in the prev slide, we can change it to mine a lucky hash

3https://github.com/not-an-aardvark/lucky-commit
zenithal Learn Git 2022-03-31 15 / 37

ref

zenithal Learn Git 2022-03-31 16 / 37

ref

ref is a convenient reference to one specific commit/other ref
in .git/ref
two types of ref

direct ref
indirect ref, e.g. HEAD (often the case)

two common refs we will introduce today
heads: local branch
remotes: remote branch

zenithal Learn Git 2022-03-31 17 / 37

local branch and direct ref

Create file (not recommended as no reflog)
mkdir -p .git/refs/heads/
echo d4dafde7cd9248ef94c0400983d51122099d312a > .git/refs/heads/br1

The following command will leave reflog in .git/log/refs/heads/br1
git update-ref --no-deref -m 'Reason for update' refs/heads/br1 d4da
git branch -f br1 d4da

zenithal Learn Git 2022-03-31 18 / 37

local branch and direct ref

Create file (not recommended as no reflog)
mkdir -p .git/refs/heads/
echo d4dafde7cd9248ef94c0400983d51122099d312a > .git/refs/heads/br1
The following command will leave reflog in .git/log/refs/heads/br1
git update-ref --no-deref -m 'Reason for update' refs/heads/br1 d4da
git branch -f br1 d4da

zenithal Learn Git 2022-03-31 18 / 37

about reflog

Record all the changes to your ref
Useful when you accidently switch to another place

git rebase master
git checkout -B master origin/master
then you want to switch to old tree for some reason
reflog shows the commit that one ref was

Demo of my working dir: lots of reflogs

zenithal Learn Git 2022-03-31 19 / 37

indirect ref

Remember when you init
echo 'ref: refs/heads/master' > .git/HEAD

This format is indirect ref

zenithal Learn Git 2022-03-31 20 / 37

index

zenithal Learn Git 2022-03-31 21 / 37

index

index stores what to be commited when you git commit
file at .git/index
often we call things in index as staged (the figure above)
a complex database
contains many things, like filename, mode, hash, mtime, etc

zenithal Learn Git 2022-03-31 22 / 37

manipulate index

it is hard to manupulate index
we study common cases here
git add stores the content into index
mark them ready for commit

1. git add; git status
the file you added is ready for commit

2. git add; modify; git status
the file content you added is ready for commit
the new file content you did not add is not visible to index
modify will not be contained in commit

3. git add; rm; git status; git restore
even though file is deleted, it has a copy in index
if you accidently rm -rf *, you can restore your file!

zenithal Learn Git 2022-03-31 23 / 37

manipulate index

it is hard to manupulate index
we study common cases here
git add stores the content into index
mark them ready for commit
1. git add; git status

the file you added is ready for commit

2. git add; modify; git status
the file content you added is ready for commit
the new file content you did not add is not visible to index
modify will not be contained in commit

3. git add; rm; git status; git restore
even though file is deleted, it has a copy in index
if you accidently rm -rf *, you can restore your file!

zenithal Learn Git 2022-03-31 23 / 37

manipulate index

it is hard to manupulate index
we study common cases here
git add stores the content into index
mark them ready for commit
1. git add; git status

the file you added is ready for commit
2. git add; modify; git status

the file content you added is ready for commit
the new file content you did not add is not visible to index
modify will not be contained in commit

3. git add; rm; git status; git restore
even though file is deleted, it has a copy in index
if you accidently rm -rf *, you can restore your file!

zenithal Learn Git 2022-03-31 23 / 37

manipulate index

it is hard to manupulate index
we study common cases here
git add stores the content into index
mark them ready for commit
1. git add; git status

the file you added is ready for commit
2. git add; modify; git status

the file content you added is ready for commit
the new file content you did not add is not visible to index
modify will not be contained in commit

3. git add; rm; git status; git restore
even though file is deleted, it has a copy in index
if you accidently rm -rf *, you can restore your file!

zenithal Learn Git 2022-03-31 23 / 37

switch/checkout

zenithal Learn Git 2022-03-31 24 / 37

switch/checkout

Recall that .git/HEAD is a ref
This ref is for your worktree
Recall your worktree is your actual content
Change the content of your worktree by manipulating HEAD

zenithal Learn Git 2022-03-31 25 / 37

switch/checkout (cont’d)

Most famous: git checkout master
Make HEAD point to refs/heads/master
Then checkout the content to your worktree
That’s why it is named checkout
Actually an old syntax, recommend using switch now
git switch master

Yet most famous: git reset --hard HEAD∼1
Change HEAD to HEAD∼1 (the former commit of HEAD)
Checkout the content to your worktree
Note: there are reset --soft/--mixed, learn them by yourself

zenithal Learn Git 2022-03-31 26 / 37

switch/checkout (cont’d)

Most famous: git checkout master
Make HEAD point to refs/heads/master
Then checkout the content to your worktree
That’s why it is named checkout
Actually an old syntax, recommend using switch now
git switch master

Yet most famous: git reset --hard HEAD∼1
Change HEAD to HEAD∼1 (the former commit of HEAD)
Checkout the content to your worktree
Note: there are reset --soft/--mixed, learn them by yourself

zenithal Learn Git 2022-03-31 26 / 37

pull/clone/push

zenithal Learn Git 2022-03-31 27 / 37

remotes

Recall that we have talked about .git/refs/remotes
Since we have local ref(branch), we can also have remote ref(branch)
If no remote branch, it is not a distributed version control system
How to sync them?
pull commit from remote to local
push commit from local to remote
So the concept of commit is very useful

zenithal Learn Git 2022-03-31 28 / 37

config remote

If you want to have remote branch, you must have a remote first
edit .git/config to add them
or git remote add origin git@github.com:xxx/yyy

origin is a convention, you can use other name
You can have multiple remote

Demo of my repo

zenithal Learn Git 2022-03-31 29 / 37

fetch remote

git fetch origin master
Fetch the master ref from origin
You can check .git/refs/remotes/origin/master now

git pull origin master
despite git fetch, it tries to update your local ref
Update .git/refs/remotes/origin/master
and update .git/refs/heads/master accordingly
The relationship is recorded in .git/config

git pull
short hand for the above, according to your .git/config

git clone
Actually a short hand for
git init
git remote add
git pull

zenithal Learn Git 2022-03-31 30 / 37

fetch remote

git fetch origin master
Fetch the master ref from origin
You can check .git/refs/remotes/origin/master now

git pull origin master
despite git fetch, it tries to update your local ref
Update .git/refs/remotes/origin/master
and update .git/refs/heads/master accordingly
The relationship is recorded in .git/config

git pull
short hand for the above, according to your .git/config

git clone
Actually a short hand for
git init
git remote add
git pull

zenithal Learn Git 2022-03-31 30 / 37

fetch remote

git fetch origin master
Fetch the master ref from origin
You can check .git/refs/remotes/origin/master now

git pull origin master
despite git fetch, it tries to update your local ref
Update .git/refs/remotes/origin/master
and update .git/refs/heads/master accordingly
The relationship is recorded in .git/config

git pull
short hand for the above, according to your .git/config

git clone
Actually a short hand for
git init
git remote add
git pull

zenithal Learn Git 2022-03-31 30 / 37

fetch remote

git fetch origin master
Fetch the master ref from origin
You can check .git/refs/remotes/origin/master now

git pull origin master
despite git fetch, it tries to update your local ref
Update .git/refs/remotes/origin/master
and update .git/refs/heads/master accordingly
The relationship is recorded in .git/config

git pull
short hand for the above, according to your .git/config

git clone
Actually a short hand for
git init
git remote add
git pull

zenithal Learn Git 2022-03-31 30 / 37

push remote

git push origin master
Sync your local branch master to remote branch master

git push
short hand for the above, according to your .git/config

New branch then git push -u origin :new-branch
Add a new ref in the remote
At the same time set the upstream to new-branch
Check your .git/config now

zenithal Learn Git 2022-03-31 31 / 37

push remote

git push origin master
Sync your local branch master to remote branch master

git push
short hand for the above, according to your .git/config

New branch then git push -u origin :new-branch
Add a new ref in the remote
At the same time set the upstream to new-branch
Check your .git/config now

zenithal Learn Git 2022-03-31 31 / 37

push remote

git push origin master
Sync your local branch master to remote branch master

git push
short hand for the above, according to your .git/config

New branch then git push -u origin :new-branch
Add a new ref in the remote
At the same time set the upstream to new-branch
Check your .git/config now

zenithal Learn Git 2022-03-31 31 / 37

merge

zenithal Learn Git 2022-03-31 32 / 37

merge

Now you have commits, you have refs
How do you merge refs/branches together?
recall that a branch points to a commit, a commit contains a specific tree
Namely we need to merge tree, then we need to merge blob first
How to merge blob?

zenithal Learn Git 2022-03-31 33 / 37

two way merge

Two way means the algo can only see two files (our and their)
Let’s setup the file as chapter6.md
Two way merge of fileB and fileC

The change can be fileC has removed B in the first line and added C in the last line
The change can be fileB has added B in the first line and deleted C in the last line
Do not know how to merge, abort

It is not useful

zenithal Learn Git 2022-03-31 34 / 37

three way merge

Three way merge means the algo can see three files (base, our and their)
Three way merge of fileB and fileC with fileA as base

Compared with fileA, fileB added B in the first line
Compared with fileA, fileC added C in the last line
No conflict in changes
git merge-file --stdout <our> <base> <their>
git merge-file --stdout fileC fileA fileB
lineBB
...some stuff...
lineCC

zenithal Learn Git 2022-03-31 35 / 37

three way merge (cont’d)

What if they both modify the same line? Conflict!
Usually need manual involvement
E.g. git merge-file --stdout fileD fileA fileB

Compared with fileA, fileD added D in the first line
Compared with fileA, fileB added B in the first line
Output
<<<<<<< fileD
lineBD
=======
lineBB
>>>>>>> fileB
...some stuff...
lineC

zenithal Learn Git 2022-03-31 36 / 37

How to resolve conflict

Remove all the helper line
Leave the actual content
lineBBD
...some stuff...
lineC
Or if you are aware of what you are doing

git merge-file --ours --stdout fileD fileA fileB
Keep our change, discard theirs
git merge-file --theirs --stdout fileD fileA fileB
Keep their change, discard ours
git merge-file --union --stdout fileD fileA fileB
Keep both changes, concat them

zenithal Learn Git 2022-03-31 37 / 37

	init
	objects
	ref
	index
	switch/checkout
	pull/clone/push
	merge

