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Recap: RLWE-based Homomorphic Encryption

(as +∆m + e, a)
Secret key s Message ∆m Noise e

Polynomial ring R = Z[X ]/(XN + 1)

a, s,m, e are polynomials

Poly multiplication is coeff convolution

a · b =
2N−1∑
i=0

 ∑
j+k=i

ajbk

X i (mod XN + 1)

m

e

↑

✓

m

e

✗
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Recap: RLWE-based Homomorphic Encryption

(as +∆m + e, a)
Secret key s Message ∆m Noise e

Message in high bits

Noise grows after HE operations

Noise should never overflow

correctness efficiency
tradeoff

⇓
Noise Analysis

m

e

↑

✓

m

e

✗
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Worst-Case Noise Analysis

m

e1

+

m

e2

=

m

e1 + e2

+ is easy
∥e1 + e2∥ ≤ ∥e1∥ + ∥e2∥

m

e1

×

m

e2

=

m

e1 · e2

× is hard
∥e1 · e2∥ ≤ N · ∥e1∥ · ∥e2∥

N is worst-case expansion factor, very conservative and undesired

Empirically, growth should be C
√
N
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Average-Case Noise Analysis: Variance-Based

e Var(e)

∥e∥ = 6σ

Gaussian Heuristic (✗)

Previous Workflow

e Var(e)

Larger ∥e∥

Heavier tail

Our Observation

[CCH+24]: Noises follow Gaussian distribution

Estimate the variance Var(e) after each step
Finally induce the Gaussian bound ∥e∥

Contribution 1: Invalidate the Gaussian Heuristic

Noises are not Gaussian after deep multiplications

Var(e1 + e2) = Var(e1) + Var(e2)

Var(e1 · e2) = N · Var(e1) · Var(e2)
⇓ ✗

∥e1 · e2∥ =
√
N · ∥e1∥ · ∥e2∥
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Dependencies

s

ct1 ct2

Enc Enc

indep?

Common Dependencies

ct ct1 ct2

ct · ct ct1 · ct2

Mult Mult

diff?

Ciphertext Dependencies

Contribution 2: Study dependencies in noise analysis

Previously, use Independence Heuristic because dependencies are hard
Two types of dependencies

Common dependencies: All ct share secret key s
Ciphertext dependencies: ct · ct v.s. ct1 · ct2

Contribution 3: Find flaws in OpenFHE empirical formula
Root cause: Gaussian Heuristic + Independence Heuristic
Special cases will violate both
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Section 1

Technical Details
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Noise in BFV

Polynomial ring R = Z[X ]/(XN + 1), N power of 2

Noise e ← N (0, σ2) with Gaussian coefficients

Secret key s ← {−1, 0, 1} with uniform ternary coefficients

pk = (−as + epk, a)

ct = uct · pk+ (∆m + ect, e
′
ct)

ct(s) = ∆m + ect + uct · epk + e ′ct · s︸ ︷︷ ︸
Noise v

Common dependencies: secret key s and noise in public key epk

Ciphertext dependencies: ciphertext specific uct and ect
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BFV Multiplication

BFV ct in R/QR. Multiplication happens in R.
ct1(s) = ∆m1 + v1 + h1Q

h1Q ≈ c1 s

h1Q ≈ cts
t

h1 ≈ µct1 s

(ct1 ⊗ ct2)(s) = v1h2 + v2h1 + · · ·

= s2 · (µct2ect1) + · · ·

(
k⊗
i

cti

)
(s) = sk ·

(∏
µcti ectj

)
+ · · ·

ctk(s) = skµk−1
ct · ect + · · ·

Assume relinearize after each multiplication
but introduces negligible noise

k-way multiplication contains high degree
terms

sk in noise generally

µk−1
ct in noise in specific circuit

Lazy relinearize makes degree higher

Need to study distribution of

Product of Gaussians:
∏

fi

Power of one Gaussian: f k

Mixed Product of Gaussians:
∏

f kii

Are they Gaussian?

⇒ Study the Kurtosis!
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Kurtosis/Bound of Gaussian

Definition (Kurtosis)

The Kurtosis of a zero-mean random variable
X is defined as

Kurt(X ) =
E[X 4]

(E[X 2])2
=

E[X 4]

Var(X )2

Kurtosis measures tailedness [Wes14]

Gaussian has constant Kurt = 3

Kurt(N (0, σ2)) =
3σ4

(σ2)2
= 3

Usually bound X using B = 6σ

−6 2 3 6

Tail = ϵ

B = 6σ

p(x)

Figure: Gaussian Distribution with 6σ Bound

P(|X | > B) = erfc

(
B

σ
√
2

)
≈ 2−28 = ϵ
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Kurtosis and Bound

3 6 8

B = 6σ

x

p(x)

Gaussian Distribution

p(x) ∼ exp(−x2)

Kurt = 3

B = 6σ

3 6 8

x

p(x)

Laplace Distribution

p(x) ∼ exp(−|x |)
Kurt = 6

B = 23.3σ

3 6 8

x

p(x)

Generalized Gaussian Distribution

p(x) ∼ exp(−|x |0.5)
Kurt = 25.2

B = 43.5σ

Trend: Tail decays slower ↘, Tail heavier ↗, Kurtosis ↗, Bound ↗
Kurtosis ≫ 3 ⇒ not Gaussian

B derived with the same failing probability ϵ
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Main Theorems

Let fi ← N (0, 1) be independent Gaussian polynomials

Theorem (
∏

Indep)

F =
∏k

i fi

Kurt(F ) = 3 + 3
2k − 2

N

Theorem (
∏

Same)

F = f k

Kurt(F ) = 3 + 3

(2k
k

)
− 2

N

Theorem (Mixed
∏
)

F =
∏

f kii

Kurt(F ) = 3 + 3

∏(2ki
ki

)
− 2

N

k is multiplication depth; N is ring dimension

For practical N = 216, k > 16 (or k > 10) ⇒ Kurt > 6 ⇒ F not Gaussian

Noises are not Gaussian!

in deep multiplications
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Main Theorems
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Theorem (
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F =
∏k
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(2k
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∏
)

F =
∏

f kii

Kurt(F ) = 3 + 3

∏(2ki
ki

)
− 2

N

Remark 1: When N →∞, Kurt→ 3

It becomes Gaussian!
Exactly Central Limit Theorem
But here N is finite, so CLT fails

Remark 2: When k small, Kurt ≈ 3

Illusion that noises are always Gaussian
Past experiments only done for small k

Remark 3: There is no widely-known name for these distributions
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Experimental Results

Gaussian bound fails ⇒ Noises not Gaussian

x-axis: mul-depth k

Calculate the variance σ2 thus StdErr σ

Sample 300k times and record max noise

Normalize to 0 to see the difference

y -axis: max noise v.s. StdErr

log2(v/σ) = log2(v)− log2(σ)
In logarithm scale!

Gaussian bound: 6σ

0 5 10 15 20 25 30

#Mult

0

2

4

6

8

lo
g
2
(v
)
−

lo
g
2
(σ

)

StdErr

Gaussian Bound

Max Noise (300k Tests)

e1 e1e2 · · · ∏32 ei
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Experimental Results

Gaussian bound fails ⇒ Noises not Gaussian

8 bit overflow ⇒ 256σ deviation

If Gaussian, happens with prob 2−47282

When k small, noises are Gaussian-like

Kurt = 3 + 3 2k−2
N

k small ⇒ Kurt ≈ 3

Caused illusion that noises are Gaussian!

Curve not smooth because of independent samples

0 5 10 15 20 25 30

#Mult

0

2
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8

lo
g
2
(v
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−
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g
2
(σ

)

StdErr

Gaussian Bound
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e1 e1e2 · · · ∏32 ei
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Case study: How dependencies affact the variance

We also calculate the variance

Theorem (
∏

Indep)

Var
(∏

fi

)
= Nk−1

Theorem (
∏

Same)

Var
(
f k
)
= k!Nk−1

Theorem (Mixed
∏
)

Var
(∏

f kii

)
=
∏

ki !N
k−1

BFV ct independent product

Var

((
k⊗
i

cti

)
(s) = sk ·

(∏
µcti ectj

)
+ · · ·

)
≈ k! · N2k−1 · Var(s)k · · ·

We are able to exactly derive k! while [BMCM23] used experimental correction factor

Common dependencies ⇒ Variance ↗
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Case study: How dependencies affact the variance

We also calculate the variance

Theorem (
∏

Indep)

Var
(∏

fi

)
= Nk−1

Theorem (
∏

Same)

Var
(
f k
)
= k!Nk−1

Theorem (Mixed
∏
)

Var
(∏

f kii

)
=
∏

ki !N
k−1

BFV ct dependent product v.s. independent product

Var
(
ctk(s) = skµk−1

ct · ect + · · ·
)

Var
((⊗k

i cti

)
(s) = sk ·

(∏
µcti ectj

)
+ · · ·

) ≈ (k − 1)!

Ciphertext dependencies ⇒ Variance ↗
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Test the Empirical Formula in OpenFHE

OpenFHE used 2
√
N empirical expansion factor

Originally tested using e · e′ and e · s
Works for ek ,

∏
ei ,
∏

si

Fails for sk and modulus switching error

Does not affect security because of other loose
factors

Contacted OpenFHE and fixed in v1.3.1

Use 4
√
N for these special cases

0 5 10 15 20 25 30

#Mult

−20

−15

−10

−5

0

5

10

15

lo
g
2
(v
)
−

lo
g
2
(σ

)

StdErr

Gaussian Bound

2
√
N Bound

Max Noise

4
√
N Bound

sk
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Implications and Open Questions

Software needs to track common dependencies and ciphertext dependencies

If they want to do average-case noise analysis
Means an application-specific analysis and parameter generation
Agrees with the Application-Aware security model [AAMP24]
Compiler can help here!

What is the true distribution of the noises?

Noise analysis needs the bound!
We only calculated the kurtosis

Kurt Bound B
?

How can ciphertext dependencies be used for attack?

Recent attacks1 [GNSJ24, CCP+24, CSBB24] exploited such dependencies in addition (+)
We are able to analyse dependencies in multiplication (×).

1or misconfiguration as argued in [AAMP24]
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Informal Comments on CKKS Average-Case Noise Analysis

The major term2 in CKKS noise is

m1 ·m2 ·m3 · · · (ect)

We know little about messages mi (otherwise security implications)

Previous works assume mi are uniform in range [−1, 1]
Assumption is not practical

Need distribution analysis and range analysis depending on applications

No good ways to do average-case

Maybe we can only use worst-case analysis, or empirical results

2Especially for OpenFHE “reduced error” implementation
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Summary

Noises are not Gaussian after deep multiplications

Dependencies greatly affect the variance and kurtosis of the noise

Find flaws in empirical formula in OpenFHE

Thank you!

Questions?
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